Affiliation:
1. Institute for Metals Superplasticity Problems, Russian Academy of Sciences, 39 Khalturin St., Ufa 450001, Russia
Abstract
Joints of copper sheets with a thickness of 0.8 mm were produced by ultrasonic welding. To assess the quality of the joints, tensile lap-shear strength, area fraction of bonding, distributions of normal strains in the cross sections of welded samples, linear weld density at a magnification of ×1000, and the microstructure and microhardness of welded samples were analyzed. It was proved that the arrangement of microbonds and length of gaps in joint zones significantly depended on the local normal strains of welded samples caused by the penetration of tool ridges under the clamping pressure. Joint regions with a linear weld density of more than 70% were observed if the local compression strains of the sample exceeded 15%. The appearance of local tensile strains was accompanied by a drop in the linear weld density of the joints in some regions, down to 5%. The distribution of normal strains depends on the mutual positions of the ridges of the welding tip and anvil. It is concluded that in order to improve the quality of joints obtained by ultrasonic welding and reduce the scatter of their strength values, welding tools should provide sufficiently high normal compression strains in the weld spot area.
Funder
Russian Science Foundation
Subject
General Materials Science,Metals and Alloys
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献