Organic Light-Emitting Diodes with Electrospun Electrodes for Double-Side Emissions

Author:

Ciobotaru Iulia Corina1ORCID,Enculescu Monica1ORCID,Polosan Silviu1,Enculescu Ionut1,Ciobotaru Constantin Claudiu1ORCID

Affiliation:

1. National Institute of Materials Physics, Laboratory of Functional Nanostructures, Atomistilor 405A, 077125 Magurele, Romania

Abstract

Transparent conductive electrodes (TCE) obtained by the electrospinning method and gold covered were used as cathodes in the organic light-emitting diodes (OLEDs) to create double side-emission. The electro-active nanofibers of poly(methyl methacrylate) (PMMA) with diameters in the range of several hundreds of nanometers, were prepared through the electrospinning method. The nanofibers were coated with gold by sputtering deposition, maintaining optimal transparency and conductivity to increase the electroluminescence on both electrodes. Optical, structural, and electrical measurements of the as-prepared transparent electrodes have shown good transparency and higher electrical conductivity. In this study, two types of OLEDs consisting of indium tin oxide (ITO)/ poly(3,4-ethylenedioxythiophene) polystyrene sulfonate (PEDOT-PSS)/ Ir(III) complex (8-hydroxyquinolinat bis(2-phenylpyridyl) iridium–IrQ(ppy)2 20 wt% embedded in N, N′-Dicarbazolyl-4,4′-biphenyl (CBP) sandwich structure and either gold-covered PMMA electrospun nanoweb (OLED with electrospun cathode) were fabricated together with a similar structure containing thin film gold cathodes (OLED with thin film cathode). The luminance-current-voltage characteristics, the capacitance-voltage, and the electroluminescence properties of these OLEDs were investigated.

Funder

Unitatea Executiva Pentru Finantarea Invatamantului Superior a Cercetarii Dezvoltarii si Inovarii

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Mechanical Engineering,Control and Systems Engineering

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3