Transferring Surgical Expertise: Analyzing the Learning Curve of Robotic Cardiac Surgery Operative Time Reduction When Surgeon Moves from One Experienced Center to Another

Author:

Khairallah Sherif M.12,Rahouma Mohamed1ORCID,Mick Stephanie L.1

Affiliation:

1. Cardiothoracic Surgery Department, Weill Cornell Medicine New York-Presbyterian Hospital (WCM), 525 East 68th Street, Suite M404, New York, NY 10065, USA

2. National Cancer Institute, Cairo University, Cairo 11562, Egypt

Abstract

Background: Robotically assisted cardiac surgery is performed in a team setting and is well known to be associated with learning curves. Surgeon and operative team learning curves are distinct entities, with total operative time representing the entire operative team (surgery, anesthesia, nursing, and perfusion) and cross-clamp time representing mainly the surgical team. Little is known about how a team learning curve evolves when an experienced surgeon transitions from one surgical center to another. This study investigates the dynamics of the team learning curve expressed as total operative time in the case of a surgeon with previous experience transitioning to a new team. Methods: A retrospective analysis was conducted on robotic cardiac surgeries performed by a surgeon who transitioned from one experienced surgical center to another. Operative time data were collected and categorized to assess the evolution of the learning curve. Statistical analysis, including learning curve modeling and linear regression analysis, was used to evaluate changes in total time in the operating room per case. Results: 103 cases were included in Weill Cornell Medicine (2019–2023). The median patient age was 63 years, 68% were males, 90.3% of cases were repaired for degenerative mitral valve disease, and the median body mass index was 23.87. Operative time (ORT) decreased from a median of 5.00 h [95%CI: 4.76, 6.00] in the first 30 cases to 4.83 [95%CI: 4.10, 5.27] thereafter, with the apparent curve plateauing indicative of the adaptation period to the new surgical environment (p = 0.01). Subgroup analysis among mitral cases (n = 93) showed a decrease in ORT from 5.00 [95%CI: 4.71, 5.98] in the first 26 cases to 4.83 [95%CI: 4.14, 5.30] (p = 0.045). There was no difference between the initial 30 cases and subsequent cases regarding cardiopulmonary bypass time, myocardial ischemia time, reoperation for bleeding, prolonged ventilation, reintubation, renal failure, need for an intra-aortic balloon pump, readmission to the ICU, reoperation for valvular dysfunction within 30 days, pneumonia, and deep venous thrombosis. Multivariate significant predictors of longer operative time were the first 30 cases, resection-based repairs, and MAZE as a concomitant procedure. Conclusions: Total operative time can be expected to decrease after about 30 cases when an experienced robotic surgeon moves between centers. Complications and cross-clamp times are less susceptible to a learning curve phenomenon in such a circumstance, as these depend primarily on the operating surgeon’s level of experience. Understanding these dynamics can inform the planning and management of surgical transitions, ensuring optimal patient care and continued improvement in surgical outcomes.

Publisher

MDPI AG

Reference28 articles.

1. 2017 AHA/ACC focused update of the 2014 AHA/ACC guideline for the management of patients with valvular heart disease: A report of the American College of Cardiology/American Heart Association Task Force on Clinical Practice Guidelines;Nishimura;Circulation,2017

2. Guidelines on the management of valvular heart disease (version 2012) The Joint Task Force on the Management of Valvular Heart Disease of the European Society of Cardiology (ESC) and the European Association for Cardio-Thoracic Surgery (EACTS);Members;Eur. Heart J.,2012

3. Predictors of mitral valve repair: Clinical and surgeon factors;Bolling;Ann. Thorac. Surg.,2010

4. Influence of hospital procedural volume on care process and mortality for patients undergoing elective surgery for mitral regurgitation;Gammie;Circulation,2007

5. Mitral valve repair rates correlate with surgeon and institutional experience;LaPar;J. Thorac. Cardiovasc. Surg.,2014

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3