Impact of High-Molecular-Weight Hyaluronic Acid on Gene Expression in Rabbit Achilles Tenocytes In Vitro

Author:

Miescher Iris,Wolint PetraORCID,Opelz Christine,Snedeker Jess G.,Giovanoli Pietro,Calcagni MaurizioORCID,Buschmann JohannaORCID

Abstract

(1) Background: Surgical tendon repair often leads to adhesion formation, leading to joint stiffness and a reduced range of motion. Tubular implants set around sutured tendons might help to reduce peritendinous adhesions. The lubricant hyaluronic acid (HA) is a viable option for optimizing such tubes with the goal of further enhancing the anti-adhesive effect. As the implant degrades over time and diffusion is presumed, the impact of HA on tendon cells is important to know. (2) Methods: A culture medium of rabbit Achilles tenocytes was supplemented with high-molecular-weight (HMW) HA and the growth curves of the cells were assessed. Additionally, after 3, 7 and 14 days, the gene expression of several markers was analyzed for matrix assembly, tendon differentiation, fibrosis, proliferation, matrix remodeling, pro-inflammation and resolution. (3) Results: The addition of HA decreased matrix marker genes, downregulated the fibrosis marker α-SMA for a short time and slightly increased the matrix-remodeling gene MMP-2. Of the pro-inflammatory marker genes, only IL-6 was significantly upregulated. IL-6 has to be kept in check, although IL-6 is also needed for a proper initial inflammation and efficient resolution. (4) Conclusions: The observed effects in vitro support the intended anti-adhesion effect and therefore, the use of HMW HA is promising as a biodegradable implant for tendon repair.

Funder

Hartmann-Müller Foundation

Swiss National Science Foundation

Publisher

MDPI AG

Subject

Inorganic Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Computer Science Applications,Spectroscopy,Molecular Biology,General Medicine,Catalysis

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3