Abstract
The Special Issue “DNA Packaging Dynamics of Bacteriophages” is focused on an event that is among the physically simplest known events with biological character. Thus, phage DNA (and RNA) packaging is used as a relatively accessible model for physical analysis of all biological events. A similar perspective motivated early phage-directed work, which was a major contributor to early molecular biology. However, analysis of DNA packaging encounters the limitation that phages vary in difficulty of observing various aspects of their packaging. If a difficult-to-access aspect arises while using a well-studied phage, a counterstrategy is to (1) look for and use phages that provide a better access “window” and (2) integrate multi-phage-accessed information with the help of chemistry and physics. The assumption is that all phages are characterized by the same evolution-derived themes, although with variations. Universal principles will emerge from the themes. A spin-off of using this strategy is the isolation and characterization of the diverse phages needed for biomedicine. Below, I give examples in the areas of infectious disease, cancer, and neurodegenerative disease.
Subject
Inorganic Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Computer Science Applications,Spectroscopy,Molecular Biology,General Medicine,Catalysis