Calibration of MODIS-Derived Cropland Growing Season Using the Climotransfer Function and Ground Observations

Author:

Ye LimingORCID,De Grave Johan,Van Ranst Eric,Xu Lijun

Abstract

The global environment experienced notable changes in the recent past of planet Earth. Satellite remote sensing has played an increasingly important role in monitoring and characterizing these changes. Being recognized as a sensitive indicator of global climate change, land surface phenology (LSP) observations by satellite remote sensing have received much attention in recent years; however, much less attention has been paid to the calibration of these observations using standardized procedures. Here, we propose a new approach to calibrating the satellite LSP products by developing a climotransfer function (CTF) based on a polynomial regression of the satellite-ground observation difference in key crop phenophases against climatic factors. We illustrate the model development and evaluation process with a case study of the cropland growing season in Northeast China (NEC) from 2001 to 2010 using the MODIS LSP product MCD12Q2 Collection 6 and the ground-observed crop phenology and climatic data from 98 agrometeorological stations across the region. Our results showed that the start of the cropland growing season (SOS) derived from MODIS data compared well to the ground-observed SOS, whereas the MODIS-derived season end (EOS) was delayed by 15.5 d, relative to ground observation. The MODIS-derived EOS was, therefore, spatiotemporally calibrated using a CTF model fitted to the satellite-ground difference in EOS (∆EOS) versus two climatic factors, namely, the growing degree-days on the base temperature of 10 °C (GDD10) and cloud cover (CL). The calibrated MODIS data revealed that the cropland growing season in NEC tended to shorten at 4.5 d decade−1 during 2001–2010, mainly driven by a significant delay in SOS at a similar rate, whereas no trend was detected for EOS. The calibrated data also revealed a significant shortening gradient of 1.7 d degree−1 of latitude northward. These spatiotemporal patterns would have been erroneously characterized if calibration had not been applied. More attention is therefore called to the proper calibration of satellite LSP products prior to any meaningful applications.

Funder

Yunnan Lijun Xu’s expert workstation

Yunnan Key Research and Development Program

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3