Eco-Friendly Semi-Interpenetrating Polymer Network Hydrogels of Sodium Carboxymethyl Cellulose/Gelatin for Methylene Blue Removal

Author:

Chen Rongbin1,Yang Shanbin1ORCID,Liu Bing1,Liao Youlin1

Affiliation:

1. Engineering Research Center of Biotechnology of Active Materials (Ministry of Education), College of Chemistry, Chongqing Normal University, Chongqing 401331, China

Abstract

The present work describes the potential application of environmentally friendly sodium carboxymethylcellulose/gelatin (CMC/Gel) semi-interpenetrating hydrogels prepared by citric acid as a nontoxic cross-linking agent to adsorb dyes. The prepared hydrogels were characterized by X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FT-IR), scanning electron microscopy (SEM), thermogravimetric analysis (TGA/DTG), and swelling study. The adsorption performance of CMC/Gel2 (C/G2) hydrogel on methylene blue (MB) was investigated. The results showed the better adsorption conditions: adsorption time of 300 min, initial MB concentration of 500 mg/L, adsorbent dosage of 1.2 g/L, solution pH of 7, and temperature of 30 °C. The adsorption kinetics fit the pseudo-second order kinetics model, and the adsorption isotherm fit the Langmuir isotherm model. The maximum adsorption capacity reached 943.40 mg/g. The adsorption process is a spontaneous exothermic process. After three adsorption–desorption cycles, the removal rate of MB by hydrogel still reached 85%, with good reusability. Consequently, the hydrogel can be used as an environmentally friendly, stable, and efficient adsorbent for dyes in wastewater treatment.

Funder

Open Fund Project of the Engineering Research Center of Active Matter Biotechnology, Ministry of Education

Chongqing Normal University Achievement Transformation Project Fund

Chongqing Normal University Doctoral Initiation Project

Social Undertakings and Livelihood Security Science and Technology Innovation Special Project of Chongqing

Publisher

MDPI AG

Subject

General Materials Science

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3