N–Doped Porous Carbon Microspheres Derived from Yeast as Lithium Sulfide Hosts for Advanced Lithium-Ion Batteries

Author:

Liang ShengORCID,Chen Jie,He Xuehua,Liu Lingli,Zhou Ningning,Hu Lei,Wang LiliORCID,Liang Dewei,Yu Tingting,Tian Changan,Liang Chu

Abstract

Lithium sulfide (Li2S) is considered to be the best potential substitution for sulfur-based cathodes due to its high theoretical specific capacity (1166 mAh g−1) and good compatibility with lithium metal-free anodes. However, the electrical insulation nature of Li2S and severe shuttling of lithium polysulfides lead to poor rate capability and cycling stability. Confining Li2S into polar conductive porous carbon is regarded as a promising strategy to solve these problems. In this work, N-doped porous carbon microspheres (NPCMs) derived from yeasts are designed and synthesized as a host to confine Li2S. Nano Li2S is successfully entered into the NPCMs’ pores to form N-doped porous carbon microspheres–Li2S composite (NPCMs–Li2S) by a typical liquid infiltration–evaporation method. NPCMs–Li2S not only delivers a high initial discharge capacity of 1077 mAh g−1 at 0.2 A g−1, but also displays good rate capability of 198 mAh g−1 at 5.0 A g−1 and long-term lifespan over 500 cycles. The improved cycling and high-rate performance of NPCMs–Li2S can be attributed to the NPCMs’ host, realizing the strong fixation of LiPSs and enhancing the electron and charge conduction of Li2S in NPCMs–Li2S cathodes.

Funder

National Natural Science Foundation of China

Anhui Provincial Natural Science Foundation

Talent Scientific Research Foundation of Hefei University

Publisher

MDPI AG

Subject

Process Chemistry and Technology,Chemical Engineering (miscellaneous),Bioengineering

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3