Affiliation:
1. Bosch Rexroth AG, 89081 Ulm, Germany
2. Institute of Databases and Information Systems, Ulm University, 89081 Ulm, Germany
Abstract
Industrial data scarcity is one of the largest factors holding back the widespread use of machine learning in manufacturing. To overcome this problem, the concept of transfer learning was developed and has received much attention in recent industrial research. This paper focuses on the problem of time series segmentation and presents the first in-depth research on transfer learning for deep learning-based time series segmentation on the industrial use case of end-of-line pump testing. In particular, we investigate whether the performance of deep learning models can be increased by pretraining the network with data from other domains. Three different scenarios are analyzed: source and target data being closely related, source and target data being distantly related, and source and target data being non-related. The results demonstrate that transfer learning can enhance the performance of time series segmentation models with respect to accuracy and training speed. The benefit can be most clearly seen in scenarios where source and training data are closely related and the number of target training data samples is lowest. However, in the scenario of non-related datasets, cases of negative transfer learning were observed as well. Thus, the research emphasizes the potential, but also the challenges, of industrial transfer learning.
Subject
Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献