Swin-Transformer-Based YOLOv5 for Small-Object Detection in Remote Sensing Images

Author:

Cao Xuan1,Zhang Yanwei2,Lang Song2,Gong Yan23

Affiliation:

1. School of Physical Science and Technology, Suzhou University of Science and Technology, Suzhou 215009, China

2. Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou 215613, China

3. Jinan Guoke Medical Technology Development Co., Ltd., Jinan 250104, China

Abstract

This study aimed to address the problems of low detection accuracy and inaccurate positioning of small-object detection in remote sensing images. An improved architecture based on the Swin Transformer and YOLOv5 is proposed. First, Complete-IOU (CIOU) was introduced to improve the K-means clustering algorithm, and then an anchor of appropriate size for the dataset was generated. Second, a modified CSPDarknet53 structure combined with Swin Transformer was proposed to retain sufficient global context information and extract more differentiated features through multi-head self-attention. Regarding the path-aggregation neck, a simple and efficient weighted bidirectional feature pyramid network was proposed for effective cross-scale feature fusion. In addition, extra prediction head and new feature fusion layers were added for small objects. Finally, Coordinate Attention (CA) was introduced to the YOLOv5 network to improve the accuracy of small-object features in remote sensing images. Moreover, the effectiveness of the proposed method was demonstrated by several kinds of experiments on the DOTA (Dataset for Object detection in Aerial images). The mean average precision on the DOTA dataset reached 74.7%. Compared with YOLOv5, the proposed method improved the mean average precision (mAP) by 8.9%, which can achieve a higher accuracy of small-object detection in remote sensing images.

Funder

National Natural Science Foundation of China

Jinan Innovation Team

Scientisc Research and Equipment Development Project of Chinese Academy of Sciences

Jiangsu Key Disciplines of the Fourteenth Five-Year Plan

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3