Dual-Polarization Radar-Based Quantitative Precipitation Estimation of Mountain Terrain Using Multi-Disdrometer Data

Author:

You Cheol-Hwan,Suh Sung-HoORCID,Jung Woonseon,Kim Hyeon-Joon,Lee Dong-In

Abstract

The precipitation systems that pass over mountains develop rapidly due to the forcible ascent caused by the topography, and spatial rainfall distribution differences occur due to the local development of the system because of the topography. In order to reduce the damage caused by orographic rainfall, it is essential to provide rainfall field data with high spatial rainfall accuracy. In this study, the rainfall estimation relationship was calculated using drop size distribution data obtained from 10 Parsivel disdrometers that were installed along the long axis of Mt. Halla (oriented west–east; height: 1950 m; width: 78 km; length: 35 km) on Jeju Island, South Korea. An ensemble rainfall estimation relationship was obtained using the HSA (harmony search algorithm). Through the linear combination of the rainfall estimation relationships determined by the HSA, the weight values of each relationship for each rainfall intensity were optimized. The relationships considering KDP, such as R(KDP) and R(ZDR, KDP), had higher weight values at rain rates that were more than 10 mm h−1. Otherwise, the R(ZH) and R(ZH, ZDR) weights, not considering KDP, were predominant at rain rates weaker than 5 mm h−1. The ensemble rainfall estimation method was more accurate than the rainfall that was estimated through an independent relationship. To generate the rain field that reflected the differences in the rainfall distribution according to terrain altitude and location, the spatial correction value was calculated by comparing the rainfall obtained from the dual-polarization radar and AWS observations. The distribution of Mt. Halla’s rainfall correction values showed a sharp difference according to the changes in the topographical elevation. As a result, it was possible to calculate the optimal rain field for the orographic rainfall through the ensemble of rainfall relationships and the spatial rainfall correction process. Using the proposed methodology, it is possible to create a rain field that reflects the regional developmental characteristics of precipitation.

Funder

Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3