Impact of Deforestation on Land–Atmosphere Coupling Strength and Climate in Southeast Asia

Author:

Tölle Merja H.ORCID

Abstract

Southeast Asia (SEA) is a deforestation hotspot. A thorough understanding of the accompanying biogeophysical consequences is crucial for sustainable future development of the region’s ecosystem functions and society. In this study, data from ERA-Interim driven simulations conducted with the state-of-the-art regional climate model COSMO-CLM (CCLM; version 4.8.17) at 14 km horizontal resolution are analyzed over SEA for the period from 1990 to 2004, and during El Niño–Southern Oscillation (ENSO) events for November to March. A simulation with large-scale deforested land cover is compared to a simulation with no land cover change. In order to attribute the differences due to deforestation to feedback mechanisms, the coupling strength concept is applied based on Pearson correlation coefficients. The correlations were calculated based on 10-day means between the latent heat flux and maximum temperature, the latent and sensible heat flux, and the latent heat flux and planetary boundary layer height. The results show that the coupling strength between land and atmosphere increased for all correlations due to deforestation. This implies a strong impact of the land on the atmosphere after deforestation. Differences in environmental conditions due to deforestation are most effective during La Niña years. The strength of La Nina events on the region is reduced as the impact of deforestation on the atmosphere with drier and warmer conditions superimpose this effect. The correlation strength also intensified and shifted towards stronger coupling during El Niño events for both Control and Grass simulations. However, El Niño years have the potential to become even warmer and drier than during usual conditions without deforestation. This could favor an increase in the formation of tropical cyclones. Whether deforestation will lead to a permanent transition to agricultural production increases in this region cannot be concluded. Rather, the impact of deforestation will be an additional threat besides global warming in the next decades due to the increase in the occurrence of multiple extreme events. This may change the type and severity of upcoming impacts and the vulnerability and sustainability of our society.

Publisher

MDPI AG

Subject

Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development

Reference43 articles.

1. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change;Stocker,2013

2. The World’s Protected Areas;Chape,2008

3. Dynamics of national forests assessed using the Landsat record: Case studies in eastern United States

4. High-Resolution Global Maps of 21st-Century Forest Cover Change

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3