Internet-of-Things-Assisted Smart System 4.0 Framework Using Simulated Routing Procedures

Author:

Su Jinglei,Chu Xue,Kadry Seifedine,S Rajkumar

Abstract

The environment and energy are two important issues in the current century. The development of modern society is closely linked to energy and the environment. Internet of Things (IoT) and Wireless Sensor Networks (WSNs) have recently been developed substantially to contribute to the fourth transformation of the power grid, namely the smart grid. WSNs have the potential to improve power grid reliability via cable replacements, fault-tolerance features, large-scale protection, versatility to deploy, and cost savings in the smart grid environment. Moreover, because of equipment noise, dust heat, electromagnetic interference, multipath effects, and fading, current WSNs are making it very difficult to provide effective communication for the smart grid (SG) environment, in which WSN work is more difficult. For the smart system 4.0 framework, a highly reliable communication network based on the WSN is critically important for the successful operation of electricity grids in the next decade. To solve the above problem, a Robust Bio-Dynamic Stimulated Routing Procedure (RDSRP) has been proposed based on the real-time behavior of a new Hybrid Bird Optimizer (HBO) model. The presented innovative research and development is a small yet important aspect of continuous critical activities that address one of our society’s major challenges and that reverse the dangerous trends of environmental destruction. This study explores some of the most recent advances in this area, including energy efficiency and energy harvesting, which are expected to have a significant impact on green topics under smart systems in the Internet of things. The experimental results show that the proposed distributed system suggestively enhances network efficiency and reduces the transmission of excess packets for wireless sensor network-based smart grid applications.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3