Deep Learning-Based Stereopsis and Monocular Depth Estimation Techniques: A Review

Author:

Lahiri Somnath1,Ren Jing2,Lin Xianke3ORCID

Affiliation:

1. Department of Mechanical Engineering, Ontario Tech University, Oshawa, ON L1G 0C5, Canada

2. Department of Electrical, Computer and Software Engineering, Ontario Tech University, Oshawa, ON L1G 0C5, Canada

3. Department of Automotive Engineering, Ontario Tech University, Oshawa, ON L1G 0C5, Canada

Abstract

A lot of research has been conducted in recent years on stereo depth estimation techniques, taking the traditional approach to a new level such that it is in an appreciably good form for competing in the depth estimation market with other methods, despite its few demerits. Sufficient progress in accuracy and depth computation speed has manifested during the period. Over the years, stereo depth estimation has been provided with various training modes, such as supervised, self-supervised, and unsupervised, before deploying it for real-time performance. These modes are to be used depending on the application and/or the availability of datasets for training. Deep learning, on the other hand, has provided the stereo depth estimation methods with a new life to breathe in the form of enhanced accuracy and quality of images, attempting to successfully reduce the residual errors in stages in some of the methods. Furthermore, depth estimation from a single RGB image has been intricate since it is an ill-posed problem with a lack of geometric constraints and ambiguities. However, this monocular depth estimation has gained popularity in recent years due to the development in the field, with appreciable improvements in the accuracy of depth maps and optimization of computational time. The help is mostly due to the usage of CNNs (Convolutional Neural Networks) and other deep learning methods, which help augment the feature-extraction phenomenon for the process and enhance the quality of depth maps/accuracy of MDE (monocular depth estimation). Monocular depth estimation has seen improvements in many algorithms that can be deployed to give depth maps with better clarity and details around the edges and fine boundaries, which thus helps in delineating between thin structures. This paper reviews various recent deep learning-based stereo and monocular depth prediction techniques emphasizing the successes achieved so far, the challenges acquainted with them, and those that can be expected shortly.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Automotive Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3