Abstract
The aim of this work is to obtain a reliable testing methodology for the characterization of the perceived aerodynamic comfort of motorcycle helmets. Attention was paid to the rider’s perception of annoying vibrations induced by wind. In this optic, an experimental comparative campaign was performed in the wind tunnel, testing 16 helmets in two different configurations of neck stiffness. The dataset was collected within a convolutional neural network (CNN or ConvNet) of images, creating a ranking by identifying the best and the worst helmets. The results revealed that each helmet has unique aerodynamic characteristics. Depending on the ranking scale previously created, the aerodynamic comfort of each helmets can be classified within the scale.
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献