Author:
Lee Seoung,Song Ji,Song Jae-Hyoung,Ko Hyun-Jeong,Baek Ji,Trinh Tuy,Beemelmanns Christine,Yamabe Noriko,Kim Ki
Abstract
Insect-associated bacteria have been recognized as a very promising natural resource for discovering bioactive secondary metabolites with diverse pharmacological effects. One new isoflavonoid glycoside, termisoflavone D (1), together with seven known isoflavonoids (2–8), were identified from MeOH extracts of the fungus-growing termite-associated Streptomyces sp. RB1. The chemical structure of the new compound 1 was elucidated using comprehensive spectroscopic methods including 1D and 2D NMR, along with LC/MS analysis. The existence of two rhamnose moieties in 1 was determined with comparative NMR analysis, and the absolute configuration was elucidated using chemical reactions. The neuroprotective activities of compounds 1–8 were thoroughly investigated using the murine hippocampal HT22 cell line. Compound 5 prevented glutamate-induced HT22 cell death by blocking intracellular reactive oxygen species (ROS) accumulation. The present study provides the first experimental evidence for the potential use of isoflavonoids from termite-associated bacteria as lead compounds that can prevent neuronal damage induced by glutamate.
Funder
National Research Foundation of Korea
Subject
Inorganic Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Computer Science Applications,Spectroscopy,Molecular Biology,General Medicine,Catalysis
Cited by
16 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献