NiO-MgO Prepared by the Complex-Decomposition Method as a Catalyst for Carbon Dioxide Reforming of Methane

Author:

Wang Ying1,Li Bin1,Xiao Yong-Shan1,Liu Zhong-Wen1ORCID

Affiliation:

1. Key Laboratory of Syngas Conversion of Shaanxi Province, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi’an 710119, China

Abstract

The NiO-MgO solid solution has been proven to be an efficient catalyst for the carbon dioxide reforming of methane (CRM). However, the challenge is still there for the facilely controlled synthesis of the single-phase solid solution with the uniform composition, and the interactions between NiO and MgO are not consistently correlated with the CRM performance. To address these issues, in this work, the complex-decomposition method was applied to regulate the chemical and structural properties of NiO-MgO catalysts via simply changing the complexing agent, calcination temperature, and Ni/Mg molar ratio. The catalysts were comparatively evaluated for CRM under severe reaction conditions of 750 °C, 0.1 MPa, CH4/CO2 = 1, and a gas hourly space velocity of 60000 mL·g−1·h−1. Irrespective of the complexing agents investigated, NiO-MgO solid solution was exclusively formed. However, the structural and reductive properties of the NiO-MgO catalysts were strongly dependent on the complexing agent, which is reasonably explained as the varied coordinative capabilities of the complexing agent with the metal cations. Moreover, the highest CRM performance, i.e., the initial CH4 conversion of ~86% kept constant for a time-on-stream of 20 h, was achieved over the Ni0.1Mg0.9O catalyst by using glycine as the complexing agent and calcined at 800 °C. The characterization and CRM results vigorously confirmed that a good balance between the sintering and the in situ release of active metallic Ni under CRM reaction conditions was constructed over the NiO-MgO catalyst prepared using glycine as the complexing agent, leading to its highest stability. Considering the simple procedure of the complex-decomposition method and the convenient adjustment of the NiO and MgO interactions by simply changing the complexing agent and calcination temperature, the thus developed catalyst can be applied for extensive understanding the CRM mechanism, and extended for large-scale preparation.

Publisher

MDPI AG

Subject

Process Chemistry and Technology,Chemical Engineering (miscellaneous),Bioengineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3