A Low Complexity Channel Estimation and Detection for Massive MIMO Using SC-FDE

Author:

Marques da Silva MárioORCID,Dinis Rui,Guerreiro JoãoORCID

Abstract

5G Communications will support millimeter waves (mm-Wave), alongside the conventional centimeter waves, which will enable much higher throughputs and facilitate the employment of hundreds or thousands of antenna elements, commonly referred to as massive Multiple Input–Multiple Output (MIMO) systems. This article proposes and studies an efficient low complexity receiver that jointly performs channel estimation based on superimposed pilots, and data detection, optimized for massive MIMO (m-MIMO). Superimposed pilots suppress the overheads associated with channel estimation based on conventional pilot symbols, which tends to be more demanding in the case of m-MIMO, leading to a reduction in spectral efficiency. On the other hand, MIMO systems tend to be associated with an increase of complexity and increase of signal processing, with an exponential increase with the number of transmit and receive antennas. A reduction of complexity is obtained with the use of the two proposed algorithms. These algorithms reduce the complexity but present the disadvantage that they generate a certain level of interference. In this article, we consider an iterative receiver that performs the channel estimation using superimposed pilots and data detection, while mitigating the interference associated with the proposed algorithms, leading to a performance very close to that obtained with conventional pilots, but without the corresponding loss in the spectral efficiency.

Publisher

MDPI AG

Reference23 articles.

1. Scaling Up MIMO: Opportunities and Challenges with Very Large Arrays

2. Massive MIMO Wireless Networks: An Overview

3. Millimeter Wave Mobile Communications for 5G Cellular: It Will Work!

4. IEEE 802.11 Task Group AD, PHY/MAC Complete Proposal Specificationhttp://www.ieee802.org/11/Reports/tgad_update.htm

Cited by 14 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3