Study on the Mechanical Behavior and Constitutive Model of Layered Sandstone under Triaxial Dynamic Loading

Author:

Fan Wenbing1,Zhang Junwen1,Yang Yang2,Zhang Yang1ORCID,Dong Xukai1,Xing Yulong3

Affiliation:

1. School of Energy and Mining Engineering, China University of Mining and Technology (Beijing), Beijing 100083, China

2. China Center for Safety Research, Ministry of Emergency Management of the People’s Republic of China, Beijing 100013, China

3. Hebei Haowei Xuguang New Material Technology Co., Ltd., Handan 057350, China

Abstract

In construction engineering, rock is an important building material. During the construction process, layered rock masses are typically subjected to varying dynamic load disturbances under triaxial loads. It is thus essential to investigate the mechanical response of layered rocks under various disturbances of the triaxial loads. By using a three-dimensional SHPB, triaxial dynamic compression tests with various impact dynamic load disturbances and identical triaxial static loads were carried out on sandstones with differing bedding angles. The impact pressures were 0.8, 1.2, and 1.6 MPa, and the bedding angles were 0°, 30°, 45°, 60°, and 90°. The results showed that the ductility of the sandstone considerably increased under triaxial static loading. With the increasing bedding angle, the sandstone’s dynamic strength and coupling strength first declined and subsequently rose. As the impact pressure increased, the reflective energy ratio, peak strain, and dynamic growth factor of the sandstone essentially rose progressively. The bedding angles and dynamic loads had a major impact on the damage pattern of the layered sandstones. Additionally, a constitutive model considering bedding angle, dynamic load, and static load was established and verified. The constitutive model was able to accurately characterize the dynamic behavior of the rock under load disturbances.

Funder

National Natural Science Foundation of China

Yue Qi Distinguished Scholar Project

Publisher

MDPI AG

Subject

General Mathematics,Engineering (miscellaneous),Computer Science (miscellaneous)

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3