General Approach to the Evolving Plasma Equilibria with a Resistive Wall in Tokamaks

Author:

Pustovitov Vladimir D.12,Chukashev Nikolay V.13ORCID

Affiliation:

1. National Research Centre Kurchatov Institute, 123182 Moscow, Russia

2. National Research Nuclear University Moscow Engineering Physics Institute, 115409 Moscow, Russia

3. Phystech School of Electronics, Photonics and Molecular Physics, Moscow Institute of Physics and Technology (State University), 115184 Dolgoprudny, Russia

Abstract

The dynamic problem of plasma equilibrium in a tokamak is considered taking into account the electromagnetic reaction of the vacuum vessel resistive wall. The currents induced in the wall during transient events contribute to the external magnetic field that determines the plasma shape and position. Accordingly, the plasma geometry must evolve so that the inductive excitation of the wall current would properly compensate for the resistive losses. Simultaneous consideration of these factors presents the main difficulty of the description. It is performed in a general form using the Green’s function method that guarantees the mathematical accuracy of expressions for the magnetic fields from each source. At the same time, it is desirable to minimize the related complications, which is one of the goals here. The starting point is the standard solution of the external equilibrium problem given by integral relating the poloidal magnetic flux to the magnetic field at the plasma boundary. In the evolutionary problem, the additional equations for the plasma-wall electromagnetic coupling are transformed to an equation with a similar integral over the wall, but with either the time derivative of the poloidal magnetic flux or the wall current density in the integrand. The mentioned similarity allows to use the already developed techniques, which makes this formulation compact and convenient. It provides the basis for extension of the existing analytical theory of equilibrium to the case with non-circular plasma and wall.

Publisher

MDPI AG

Subject

General Mathematics,Engineering (miscellaneous),Computer Science (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3