Lattice Boltzmann Numerical Study on Mesoscopic Seepage Characteristics of Soil–Rock Mixture Considering Size Effect

Author:

Cai Peichen1,Mao Xuesong1,Lou Ke1,Yun Zhihui1

Affiliation:

1. College of Highway, Chang’an University, Xi’an 710064, China

Abstract

One of the hot topics in the study of rock and soil hydraulics is the size effect of a soil–rock mixture’s (SRM) seepage characteristics. The seepage process of the SRM was simulated from the pore scale through the lattice Boltzmann method (LBM) in this paper to explore the internal influence mechanism of sample size effect on the SRM seepage characteristics. SRM samples were generated using the improved Monte Carlo method (IMCM), and through 342 simulation test conditions the influence of size feature parameters such as resolution (R), segmentation type, model feature size (S), feature length ratio (F), and soil/rock particle size feature ratio (P) was examined. The study demonstrated that as R increases, the permeability of the SRM gradually rises and tends to stabilize when R reaches 60 ppi. At the same S, the dispersion degree of model permeability obtained by the four segmentation types is in the order of center < random < equal < top. With an increase in S, the permeability (k) of the SRM gradually decreases, conforming to the dimensionless mathematical model, k=a0·S−b0, and tends to stabilize at S = 80 mm. With an increase in F and an increase in S, the permeability of the SRM exhibits a linear “zonal” distribution that declines in order. When F is greater than 12, the dispersion of the permeability value distribution is especially small. With an increase in P, the permeability of the SRM decreases gradually before rising abruptly. P is crucial for the grading and structural makeup of the SRM. Overall, this paper concludes that the conditions of R = 60 ppi, center segmentation type, S = 80 mm, F ≥ 12, and P set by demand can be used to select and generate the size of the SRM optimal representative elementary volume (REV) numerical calculation model. The SRM can serve as a general reference for test and engineering construction as a common geotechnical engineering material.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

General Mathematics,Engineering (miscellaneous),Computer Science (miscellaneous)

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3