Predicting the Performance of Retail Market Firms: Regression and Machine Learning Methods

Author:

Vukovic Darko B.12ORCID,Spitsina Lubov3ORCID,Gribanova Ekaterina3ORCID,Spitsin Vladislav4ORCID,Lyzin Ivan5ORCID

Affiliation:

1. Graduate School of Management, Saint Petersburg State University, Volkhovskiy Pereulok 3, 199004 Saint Petersburg, Russia

2. Geographical Institute “Jovan Cvijic” SASA, Djure Jaksica 9, 11000 Belgrade, Serbia

3. Division for Social Sciences and Humanities, School of Engineering Education, National Research Tomsk Polytechnic University, Lenina Avenue, 30, 634050 Tomsk, Russia

4. School of Engineering Entrepreneurship, National Research Tomsk Polytechnic University, Lenina Avenue, 30, 634050 Tomsk, Russia

5. School of Information Technology and Robotics Engineering, National Research Tomsk Polytechnical University, Lenina Avenue, 30, 634050 Tomsk, Russia

Abstract

The problem of predicting profitability is exceptionally relevant for investors and company owners. This paper examines the factors affecting firm performance and tests and compares various methods based on linear and non-linear dependencies between variables for predicting firm performance. In this study, the methods include random effects regression, individual machine learning algorithms with optimizers (DNN, LSTM, and Random Forest), and advanced machine learning methods consisting of sets of algorithms (portfolios and ensembles). The training sample includes 551 retail-oriented companies and data for 2017–2019 (panel data, 1653 observations). The test sample contains data for these companies for 2020. This study combines two approaches (stages): an econometric analysis of the influence of factors on the company’s profitability and machine learning methods to predict the company’s profitability. To compare forecasting methods, we used parametric and non-parametric predictive measures and ANOVA. The paper shows that previous profitability has a strong positive impact on a firm’s performance. We also find a non-linear positive effect of sales growth and web traffic on firm profitability. These variables significantly improve the prediction accuracy. Regression is inferior in forecast accuracy to machine learning methods. Advanced methods (portfolios and ensembles) demonstrate better and more steady results compared with individual machine learning methods.

Funder

Russian Science Foundation

Publisher

MDPI AG

Subject

General Mathematics,Engineering (miscellaneous),Computer Science (miscellaneous)

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3