Multi-Frame Star Image Denoising Algorithm Based on Deep Reinforcement Learning and Mixed Poisson–Gaussian Likelihood

Author:

Xie MingORCID,Zhang Zhenduo,Zheng Wenbo,Li Ying,Cao Kai

Abstract

Mixed Poisson–Gaussian noise exists in the star images and is difficult to be effectively suppressed via maximum likelihood estimation (MLE) method due to its complicated likelihood function. In this article, the MLE method is incorporated with a state-of-the-art machine learning algorithm in order to achieve accurate restoration results. By applying the mixed Poisson–Gaussian likelihood function as the reward function of a reinforcement learning algorithm, an agent is able to form the restored image that achieves the maximum value of the complex likelihood function through the Markov Decision Process (MDP). In order to provide the appropriate parameter settings of the denoising model, the key hyperparameters of the model and their influences on denoising results are tested through simulated experiments. The model is then compared with two existing star image denoising methods so as to verify its performance. The experiment results indicate that this algorithm based on reinforcement learning is able to suppress the mixed Poisson–Gaussian noise in the star image more accurately than the traditional MLE method, as well as the method based on the deep convolutional neural network (DCNN).

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. A Multimodal Approach for Attitude Measurement of Near-Earth Daytime Star Sensors;Traitement du Signal;2024-02-29

2. Expanded Scene Image Preprocessing Method for the Shack–Hartmann Wavefront Sensor;Applied Sciences;2023-09-05

3. Multi-Level Convolutional Network for Ground-Based Star Image Enhancement;Remote Sensing;2023-06-27

4. Reinforcement Learning-Based Denoising Model for Seismic Random Noise Attenuation;IEEE Transactions on Geoscience and Remote Sensing;2023

5. The application of low rank matrix decomposition method in image restoration;Second International Conference on Advanced Algorithms and Signal Image Processing (AASIP 2022);2022-11-23

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3