A High-Permeance Organic Solvent Nanofiltration Membrane via Polymerization of Ether Oxide-Based Polymeric Chains for Sustainable Dye Separation

Author:

Zhang Beibei1ORCID,Yi Chunhai2,Wu Dongyun2,Qiao Jie2,Zhang Lihua1

Affiliation:

1. Shaanxi Province Key Laboratory of New Drugs and Chinese Medicine Foundation Research, Pharmacy College, Shaanxi University of Chinese Medicine, Xianyang 712046, China

2. Shaanxi Key Laboratory of Energy Chemical Process Intensification, School of Chemical Engineering and Technology, Xi’an Jiaotong University, Xi’an 710049, China

Abstract

The widely used dyes in the pharmaceutical, chemical, and medical industries have brought about an intensive concern for the sustainable development of the environment. Membrane separation offers a versatile method for classified recycling and the reuse of residual components. In this work, polyimide membranes were synthesized via the polymerization of 4,4′-(hexafluor-isopropylidene) diphthalic anhydride and 1,4-bis (4-aminophenoxy) benzene diamine. The organic solvent nanofiltration membrane was prepared by casting onto a glass plate and precipitating in the non-solvent phase. The properties of the membranes were recorded by FTIR, 1HNMR, TGA, and GPC. The molecular simulations were carried out to analyze the affinity between the membrane and different solvents. The membrane was used in the removal of Rose Bengal, methyl blue, Victoria blue B, and crystal violet from methanol. The effects of the feed liquid concentration, operating pressure, swelling degree, organic solvent resistance, and long-term running on the membrane performance were studied. Results showed that membranes prepared in this work demonstrated high solvent permeation and dye rejection due to the sieving effect and solvent affinity. For methyl blue, the solvent performance achieved a permeability of 2.18 L∙m−2∙h−1∙bar−1 corresponding to a rejection ratio of 94.2%. Furthermore, the membrane exhibited good stability over 60 h of continued testing. These results recommend a potential strategy in the development of a suitable monomer to prepare a polyimide membrane for dye separation.

Funder

National Key R&D Program of China

National Natural Science Foundation of China

Education Department of Shaanxi Province

Publisher

MDPI AG

Subject

Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development,Building and Construction

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3