Effect of Acid Fluid on Deep Eocene Sweet Spot Reservoir of Steep Slope Zone in Lufeng Sag, Pearl River Mouth Basin, South China Sea

Author:

Zhong Kai12,Bian Lihao12,Zhao Shijie12,Feng Kailong12ORCID

Affiliation:

1. State Key Laboratory of Marine Geology, Tongji University, No. 1239 Siping Road, Shanghai 200092, China

2. Center for Marine Resources, Tongji University, No. 1239 Siping Road, Shanghai 200092, China

Abstract

The Paleogene system of the Zhuyi Depression exhibits a pronounced mechanical compaction background. Despite this compaction, remarkable secondary porosity is observed in deep clastic rocks due to dissolution processes, with well-developed hydrocarbon reservoirs persisting in deeper strata. We conducted a comprehensive study utilising various analytical techniques to gain insights into the dissolution and transformation mechanisms of deep clastic rock reservoirs in the steep slope zone of the Lufeng Sag. The study encompassed the collection and analysis of the rock thin sections, XRD whole-rock mineralogy, and petrophysical properties from seven wells drilled into the Eocene. Our findings reveal that the nature of the parent rock, tuffaceous content, dominant sedimentary facies, and the thickness of individual sand bodies are crucial factors that influence the development of high-quality reservoirs under intense compaction conditions. Moreover, the sustained modification and efficient expulsion of organic–inorganic acidic fluids play a main role in forming secondary dissolution porosity zones within the En-4 Member of the LF X transition zone. Notably, it has been established that the front edge of the fan delta, the front of the thin layer, and the near margin of the thick layer of the braided river delta represent favorable zones for developing deep sweet-spot reservoirs. Furthermore, we have identified the LF X and LF Y areas as favourable exploration zones and established an Eocene petroleum-accumulation model. These insights will significantly aid in predicting high-quality dissolution reservoirs and facilitate deep oil and gas exploration efforts in the steep slope zone of the Zhuyi Depression.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3