Optimization of Integrated Energy System Considering Electricity and Hydrogen Coordination in the Context of Carbon Trading

Author:

Li Xiaofeng1,Wang Bing2,Pan Duoyu2,Yu Xiong2,Che Yanling2,Lei Qianye2,Yang Lijia2,Wang Baofeng3,Lu Hao1

Affiliation:

1. Laboratory of Energy Carbon Neutrality, School of Electrical Engineering, Xinjiang University, Urumqi 830047, China

2. PetroChina Xinjiang Sales Co., Ltd., Urumqi 830011, China

3. Qingdao Oket Instrument Co., Ltd., Qingdao 266000, China

Abstract

In order to improve the consumption of renewable energy and reduce the carbon emissions of integrated energy systems (IESs), this paper proposes an optimal operation strategy for an integrated energy system considering the coordination of electricity and hydrogen in the context of carbon trading. The strategy makes full use of the traditional power-to-gas hydrogen production process and establishes a coupling model comprising cogeneration and carbon capture equipment, an electrolytic cell, a methane reactor, and a hydrogen fuel cell. Taking a minimum daily operating cost and minimal carbon emissions from the system as objective functions, a mixed-integer nonlinear optimal scheduling model is established. This paper designs examples based on MATLAB R2021b and uses the GUROBI solver to solve them. The results show that compared with the traditional two-stage operation process, the optimization method can reduce the daily operation cost of an IES by 26.01% and its carbon emissions by 90.32%. The results show that the operation mode of electro-hydrogen synergy can significantly reduce the carbon emissions of the system and realize a two-way flow of electro-hydrogen energy. At the same time, the addition of carbon capture equipment and the realization of carbon recycling prove the scheduling strategy’s ability to achieve a low-carbon economy of the scheduling strategy.

Funder

National Key Research and Development Program of China

National Natural Science Foundation of China

Major Project of the National Social Science Foundation of China

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3