Abstract
The broad availability and low cost of smartphones have justified their use for structural health monitoring (SHM) of bridges. This paper presents a smartphone application called App4SHM, as a customized SHM process for damage detection. App4SHM interrogates the phone’s internal accelerometer to measure accelerations, estimates the natural frequencies, and compares them with a reference data set through a machine learning algorithm properly trained to detect damage in almost real time. The application is tested on data sets from a laboratory beam structure and two twin post-tensioned concrete bridges. The results show that App4SHM retrieves the natural frequencies with reliable precision and performs accurate damage detection, promising to be a low-cost solution for long-term SHM. It can also be used in the context of scheduled bridge inspections or to assess bridges’ condition after catastrophic events.
Funder
COFAC—Cooperativa de Formação e Animação Cultural
Fundação para a Ciência e a Tecnologia
Subject
Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry
Cited by
14 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献