Binomial Regression Models with a Flexible Generalized Logit Link Function

Author:

Prasetyo Rindang BangunORCID,Kuswanto HeriORCID,Iriawan Nur,Ulama Brodjol Sutijo Suprih

Abstract

In binomial regression, a link function is used to join the linear predictor variables and the expectation of the response variable. This paper proposes a flexible link function from a new class of generalized logistic distribution, namely a flexible generalized logit (glogit) link. This approach considers both symmetric and asymmetric models, including the cases of lighter and heavier tails, as compared to standard logistic. The glogit is created from the inverse cumulative distribution function of the exponentiated-exponential logistic (EEL) distribution. Using a Bayesian framework, we conduct a simulation study to investigate the model performance compared to the most commonly used link functions, e.g., logit, probit, and complementary log–log. Furthermore, we compared the proposed model with several other asymmetric models using two previously published datasets. The results show that the proposed model outperforms the existing ones and provides flexibility fitting the experimental dataset. Another attractive aspect of the model are analytically tractable and can be easily implemented under a Bayesian approach.

Publisher

MDPI AG

Subject

Physics and Astronomy (miscellaneous),General Mathematics,Chemistry (miscellaneous),Computer Science (miscellaneous)

Reference31 articles.

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Student Perspectives of Success and Failure in Biology Lecture: Multifaceted Definitions and Misalignments;CBE—Life Sciences Education;2024-09

2. Scalable Bayesian p-generalized probit and logistic regression;Advances in Data Analysis and Classification;2024-07-04

3. Flexible loss functions for binary classification in gradient-boosted decision trees: An application to credit scoring;Expert Systems with Applications;2024-03

4. Regression Analysis in R: Linear Regression and Logistic Regression;R Programming;2024

5. Research on Diabetes Prediction Model of Pima Indian Females;Proceedings of the 2023 4th International Symposium on Artificial Intelligence for Medicine Science;2023-10-20

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3