Reversible and Irreversible Processes in Drying and Wetting of Soil

Author:

Bodale IlieORCID,Stancu AlexandruORCID

Abstract

In this article, we provide a detailed description of a modeling technique for the capillary hysteresis in a soil-like porous material based on a Generalized Preisach Model. The identification of the reversible and irreversible Preisach distributions was performed with the first-order reversal curve (FORC) diagram technique, which is very popular now in magnetism and in other areas of science to give a fingerprint of the studied system. A special attention was given to the evaluation of the reversible component. In this case, we used a set of data published in 1965 by Morrow and Harris which has been used as a reference by many other researchers since. The advantage of this approach is that the experimental FORC distributions can be described with analytical functions and easily implemented in the mentioned Preisach-type model. Our research is also focused on the development of a characterization tool for the soil using the soil-moisture hysteresis. The systematic use of scanning curves provides a (FORC) diagram linked to the physical properties of the studied soil. The agreement between the experimental data and the Preisach model using the set of parameters found through the FORC technique is really noticeable and gives a good practical option to the researchers to use a method with a strong predictive capability.

Publisher

MDPI AG

Subject

General Materials Science

Reference62 articles.

1. Estimation of Soil-Water Characteristic Curves in Multiple-Cycles Using Membrane and TDR System

2. Handbook of Porous Media;Vafai,2015

3. Main drying and wetting curves of soils: On measurements, prediction and influence on wave propagation;Albers;Eng. Trans.,2015

4. Hysteresis Loop and Scanning Curves for Argon Adsorbed in Mesopore Arrays Composed of Two Cavities and Three Necks

5. Contact angle and wetting properties;Yuan,2013

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3