No-Reference Image Quality Assessment Based on Dual-Domain Feature Fusion

Author:

Cui Yueli

Abstract

Image quality assessment (IQA) aims to devise computational models to evaluate image quality in a perceptually consistent manner. In this paper, a novel no-reference image quality assessment model based on dual-domain feature fusion is proposed, dubbed as DFF-IQA. Firstly, in the spatial domain, several features about weighted local binary pattern, naturalness and spatial entropy are extracted, where the naturalness features are represented by fitting parameters of the generalized Gaussian distribution. Secondly, in the frequency domain, the features of spectral entropy, oriented energy distribution, and fitting parameters of asymmetrical generalized Gaussian distribution are extracted. Thirdly, the features extracted in the dual-domain are fused to form the quality-aware feature vector. Finally, quality regression process by random forest is conducted to build the relationship between image features and quality score, yielding a measure of image quality. The resulting algorithm is tested on the LIVE database and compared with competing IQA models. Experimental results on the LIVE database indicate that the proposed DFF-IQA method is more consistent with the human visual system than other competing IQA methods.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

General Physics and Astronomy

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Blind quality evaluator for multi-exposure fusion image via joint sparse features and complex-wavelet statistical characteristics;Multimedia Systems;2024-07-05

2. Simple Image Features for Remote Sensing Strange Images Identification;2023 16th International Conference on Advanced Technologies, Systems and Services in Telecommunications (TELSIKS);2023-10-25

3. Prediction of the First Just Noticeable Difference Point based on Simple Image Features;2023 Zooming Innovation in Consumer Technologies Conference (ZINC);2023-05-29

4. Feature Sampling based on Multilayer Perceptive Neural Network for image quality assessment;Engineering Applications of Artificial Intelligence;2023-05

5. Fused features for no reference image quality assessment;The Imaging Science Journal;2022-07-04

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3