Diets within Environmental Limits: The Climate Impact of Current and Recommended Australian Diets

Author:

Ridoutt BradleyORCID,Baird Danielle,Hendrie Gilly A.

Abstract

Planetary boundaries are an important sustainability concept, defining absolute limits for resource use and emissions that need to be respected to avoid major and potentially irreversible earth system change. To remain within the safe operating space for humanity, there is a need for urgent adoption of climate-neutral diets, which make no additional contribution to warming. In the first study of its kind, a new climate metric, the Global Warming Potential Star (GWP*), was used to assess greenhouse gas (GHG) emissions associated with 9341 Australian adult diets obtained from the Australian Health Survey. Dietary climate footprints averaged 3.4 kg CO2-equivelent per person per day, with total energy intake explaining around one quarter of the variation. Energy-dense and nutrient-poor discretionary foods contributed around one third. With lower climate footprint food choices, a diet consistent with current Australian dietary guidelines had a 42% lower climate footprint. Currently, it is not possible to define a climate-neutral dietary strategy in Australia because there are very few climate-neutral foods in the Australian food system. To bring Australian diets into line with the climate stabilization goals of the Paris Agreement, the most important need is for innovation across the agricultural and food processing industries to expand the range of climate-neutral foods available.

Funder

Meat and Livestock Australia

Publisher

MDPI AG

Subject

Food Science,Nutrition and Dietetics

Reference64 articles.

1. Climate Change and Food Systems

2. Options for keeping the food system within environmental limits

3. Reducing food’s environmental impacts through producers and consumers

4. An IPCC Special Report on Climate Change, Desertification, Land Degradation, Sustainable Land Management, Food Security, and Greenhouse Gas Fluxes in Terrestrial Ecosystems,2020

5. Dietary Strategies to Reduce Environmental Impact: A Critical Review of the Evidence Base

Cited by 29 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3