Abstract
As a new type of marine unmanned intelligent equipment, autonomous underwater vehicle (AUV) has been widely used in the field of ocean observation, maritime rescue, mine countermeasures, intelligence reconnaissance, etc. Especially in the underwater search mission, the technical advantages of AUV are particularly obvious. However, limited operational capability and sophisticated mission environments are also difficulties faced by AUV. To make better use of AUV in the search mission, we establish the DMACSS (distributed multi-AUVs collaborative search system) and propose the ACSLA (autonomous collaborative search learning algorithm) integrated into the DMACSS. Compared with the previous system, DMACSS adopts a distributed control structure to improve the system robustness and combines an information fusion mechanism and a time stamp mechanism, making each AUV in the system able to exchange and fuse information during the mission. ACSLA is an adaptive learning algorithm trained by the RL (Reinforcement learning) method with a tailored design of state information, reward function, and training framework, which can give the system optimal search path in real-time according to the environment. We test DMACSS and ACSLA in the simulation test. The test results demonstrate that the DMACSS runs stably, the search accuracy and efficiency of ACSLA outperform other search methods, thus better realizing the cooperation between AUVs, making the DMACSS find the target more accurately and faster.
Subject
Ocean Engineering,Water Science and Technology,Civil and Structural Engineering
Reference38 articles.
1. Artificial Intelligence Planning for AUV Mission Control
2. Autonomous underwater vehicles: Current activities and research opportunities;Blidberg,1989
3. Intervention AUVs: The next challenge
Cited by
16 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献