Lithium-Rich Pegmatite Detection Integrating High-Resolution and Hyperspectral Satellite Data in Zhawulong Area, Western Sichuan, China

Author:

Ding Wenqing12ORCID,Ding Lin12,Li Qingting3ORCID,Li Jinxiang1,Zhang Liyun1ORCID

Affiliation:

1. State Key Laboratory of Tibetan Plateau Earth System, Environment and Resources, Institute of Tibetan Plateau Research, Chinese Academy of Sciences, Beijing 100101, China

2. University of Chinese Academy of Sciences, Beijing 100049, China

3. Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing 100094, China

Abstract

Lithium (Li) has grown to be a strategic key metal due to the enormous demand for the development of new energy industries over the world. As one of the most significant sources of Li resources, pegmatite-type Li deposits hold a large share of the mining market. In recent years, several large and super-large spodumene (Spd)-rich pegmatite deposits have been discovered successively in the Hoh-Xil–Songpan-Garzê (HXSG) orogenic belt of the northern Tibetan Plateau, indicative of the great Li prospecting potential of this belt. Hyperspectral remote sensing (HRS), as a rapidly developing exploration technology, is especially sensitive to the identification of alteration minerals, and has made important breakthroughs in porphyry copper deposit exploration. However, due to the small width of the pegmatite dykes and the lack of typical alteration zones, the ability of HRS in the exploration of Li-rich pegmatite deposits remains to be explored. In this study, Li-rich pegmatite anomalies were directly extracted from ZY1-02D hyperspectral imagery in the Zhawulong (ZWL) area of western Sichuan, China, using target detection techniques including Adaptive Cosine Estimator (ACE), Constrained Energy Minimization (CEM), Spectral Angle Mapper (SAM), and SAM with BandMax (SAMBM). Further, the Li-rich anomalies were superimposed with the distribution of pegmatite dykes delineated based on GF-2 high-resolution imagery. Our final results accurately identified the known range of Spd pegmatite dykes and further predicted two new exploration target areas. The approaches used in this study could be easily extended to other potential mineralization areas to discover new rare metal pegmatite deposits on the Tibetan Plateau.

Funder

Second Tibetan Plateau Scientific Expedition and Research Program

National Natural Science Foundation of China BSCTPES project

Chinese Academy of Sciences, Strategic Priority Research Program

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3