Validation of the Ocean Wave Spectrum from the Remote Sensing Data of the Chinese–French Oceanography Satellite

Author:

Li Songlin1,Yu Huaming12,Wu Kejian1,Yin Xunqiang3,Lang Shuyan4,Ye Jiacheng1

Affiliation:

1. College of Oceanic and Atmospheric Sciences, Ocean University of China, Qingdao 266100, China

2. Sanya Oceanographic Institution, Ocean University of China, Sanya 572000, China

3. The First Institute of Oceanography, and Key Laboratory of Marine Science and Numerical Modeling, Ministry of Natural Resources, Qingdao 266100, China

4. National Satellite Ocean Application Service, Beijing 100081, China

Abstract

Since the launch of CFOSAT on 29 October 2018, more than three years of observational data of ocean wave spectra with a frequency range of 0.02–0.26 Hz and a horizontal resolution of 70–90 km have been obtained. This study compares wave spectra retrieved from 6°, 8°, and 10° incidence angle beams and their combination provided by CFOSAT with corresponding data from 98 buoys from the National Data Buoy Center (NDBC) in order to validate the remote sensing wave spectral accuracy from 1 January 2020 to 31 December 2022. The correlation coefficient of frequency spectra (Rs) between CFOSAT and buoys is used to represent the accuracy of the spectral form; the root mean square (RMS) of the significant wave height (SWH) is used to represent the accuracy of the total energy. The results indicate that CFOSAT can retrieve reliable wave frequency spectral forms with a high significant wave height (Rs > 0.8 when SWH > 3 m; RS < 0.4 when SWH < 1 m). The low-frequency noise in the swell part causes the main error, the RMS of the swell height is 0.4 m whereas the RMS of wind wave height is 0.24 m, and the mask filter used for spectral partitioned provided by CFOSAT can eliminate the low-frequency noise and improve the Rs of 10° beam wave spectra from 0.59 to 0.64. For the wind wave spectra, the correct spectra have been achieved and the mask filter cannot improve the accuracy. The wave spectra from the 10° beam without mask filtering provides the best estimation of total energy, the RMS of SWH is 0.23 m, after the mask filtering, the best estimation of spectral form can be achieved, the Rs is 0.64. The novelty of this study is that we found the strong correlation between SWH and Rs, where the scatter of SWH and Rs can be fitted as: Rs = 1 − exp(−0.89·SWH + 0.20); according to this approximate formula, we can estimate the reliability of wave spectra provided by CFOSAT according to the SWH in any region, which is important for wave spectral assimilation in the numerical model. The validation of wave direction indicates that the accuracy of wave spectra in the directional component is poor; further research is needed on the causes of directional errors. Generally, this study is not only an evaluation of the quality of the CFOSAT spectral data, but also an important reference for a series of research requiring the CFOSAT spectral data.

Funder

National Key Research and Development Program of China

Project of Sanya Yazhou Bay Science and Technology City

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3