A Multiuser, Multisite, and Platform-Independent On-the-Cloud Framework for Interactive Immersion in Holographic XR

Author:

Neeli Hosein1ORCID,Tran Khang Q.1,Velazco-Garcia Jose Daniel2,Tsekos Nikolaos V.1

Affiliation:

1. Medical Robotics and Imaging Lab, Department of Computer Science, University of Houston, Houston, TX 77004, USA

2. Tietronix Software, Inc., Houston, TX 77058, USA

Abstract

Background: The ever-growing extended reality (XR) technologies offer unique tools for the interactive visualization of images with a direct impact on many fields, from bioinformatics to medicine, as well as education and training. However, the accelerated integration of artificial intelligence (AI) into XR applications poses substantial computational processing demands. Additionally, the intricate technical challenges associated with multilocation and multiuser interactions limit the usability and expansion of XR applications. Methods: A cloud deployable framework (Holo-Cloud) as a virtual server on a public cloud platform was designed and tested. The Holo-Cloud hosts FI3D, an augmented reality (AR) platform that renders and visualizes medical 3D imaging data, e.g., MRI images, on AR head-mounted displays and handheld devices. Holo-Cloud aims to overcome challenges by providing on-demand computational resources for location-independent, synergetic, and interactive human-to-image data immersion. Results: We demonstrated that Holo-Cloud is easy to implement, platform-independent, reliable, and secure. Owing to its scalability, Holo-Cloud can immediately adapt to computational needs, delivering adequate processing power for the hosted AR platforms. Conclusion: Holo-Cloud shows the potential to become a standard platform to facilitate the application of interactive XR in medical diagnosis, bioinformatics, and training by providing a robust platform for XR applications.

Funder

National Science Foundation

National Aeronautics and Space Administration

Publisher

MDPI AG

Reference65 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3