Optimal Scheduling of Hybrid Multi-Carrier System Feeding Electrical/Thermal Load Based on Particle Swarm Algorithm

Author:

Farah Alaa,Hassan Hamdy,M. Abdelshafy Alaaeldin,M. Mohamed Abdelfatah

Abstract

In this paper, the optimum coordination of an energy hub system, fed with multiple fuel options (natural gas, wood chips biomass, and electricity) to guarantee economically, environmentally friendly, and reliable operation of an energy hub, is presented. The objective is to lessen the total operating expenses and CO2 emissions of the hub system. Additionally, the effect of renewable energy sources as photovoltaics (PVs) and wind turbines (WTs) on energy hub performance is investigated. A comparison of various configurations of the hub system is done. The proper planning of the hub elements is determined by a multi-objective particle swarm optimization (PSO) algorithm to achieve the lowest level of the gross running cost and total system emissions, simultaneously. The outcomes show that the natural gas turbine (NGT) is superior to the biomass generating unit in lowering the gross operating expenses, while using the biomass wood chips plant is most effective in lessening the total CO2 emissions than the NGT plant. Furthermore, the combination of the natural gas turbine, biomass generator, photovoltaics, and wind turbines enhances the operation of the hub infrastructures by lessening both the gross operating cost and overall CO2 emission simultaneously.

Publisher

MDPI AG

Subject

Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3