Comparison of Different Artificial Intelligence Techniques to Predict Floods in Jhelum River, Pakistan

Author:

Ahmed Fahad,Loc Ho HuuORCID,Park EdwardORCID,Hassan Muhammad,Joyklad PanuwatORCID

Abstract

Floods are among the major natural disasters that cause loss of life and economic damage worldwide. Floods damage homes, crops, roads, and basic infrastructure, forcing people to migrate from high flood-risk areas. However, due to a lack of information about the effective variables in forecasting, the development of an accurate flood forecasting system remains difficult. The flooding process is quite complex as it has a nonlinear relationship with various meteorological and topographic parameters. Therefore, there is always a need to develop regional models that could be used effectively for water resource management in a particular locality. This study aims to establish and evaluate various data-driven flood forecasting models in the Jhelum River, Punjab, Pakistan. The performance of Local Linear Regression (LLR), Dynamic Local Linear Regression (DLLR), Two Layer Back Propagation (TLBP), Conjugate Gradient (CG), and Broyden–Fletcher–Goldfarb–Shanno (BFGS)-based ANN models were evaluated using R2, variance, bias, RMSE and MSE. The R2, bias, and RMSE values of the best-performing LLR model were 0.908, 0.009205, and 1.018017 for training and 0.831, −0.05344, and 0.919695 for testing. Overall, the LLR model performed best for both the training and validation periods and can be used for the prediction of floods in the Jhelum River. Moreover, the model provides a baseline to develop an early warning system for floods in the study area.

Funder

Ministry of Education of Singapore

Publisher

MDPI AG

Subject

Water Science and Technology,Aquatic Science,Geography, Planning and Development,Biochemistry

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3