Cable Tension Monitoring Based on the Elasto-Magnetic Effect and the Self-Induction Phenomenon

Author:

Zhang ,Zhou ,Zhou ,Zhang ,Chen

Abstract

Cable tension monitoring is important to control the structural performance variation of cable-supported structures. Based on the elasto-magnetic effect and the self-induction phenomenon, a new non-destructive evaluation method was proposed for cable tension monitoring. The method was called the elasto-magnetic induction (EMI) method. By analyzing the working mechanism of the EMI method, a set of cable tension monitoring systems was presented. The primary coil and the induction unit of the traditional elasto-magnetic (EM) sensor were simplified into a self-induction coil. A numerical analysis was conducted to prove the validity of the EMI method. Experimental verification of the steel cable specimens was conducted to validate the feasibility of the EMI method. To process the tension monitoring, data processing and tension calculation methods were proposed. The results of the experimental verification indicated that different cables of the same batch can be calibrated by one proper equation. The results of the numerical analysis and the experimental verification demonstrated that the cable tension can be monitored both at the tension-applying stage and the tension-loss stage. The proposed EMI method and the given monitoring system are feasible to monitor the cable tension with high sensitivity, fast response, and easy installation.

Funder

National Key Research and Development Program of China

the National Science Fund for Distinguished Young Scholars

the National Natural Science Foundation of China

Publisher

MDPI AG

Subject

General Materials Science

Cited by 22 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3