Assessing Seagrass Restoration Actions through a Micro-Bathymetry Survey Approach (Italy, Mediterranean Sea)

Author:

Rende Sante FrancescoORCID,Bosman AlessandroORCID,Menna FabioORCID,Lagudi Antonio,Bruno FabioORCID,Severino UmbertoORCID,Montefalcone MonicaORCID,Irving Andrew D.,Raimondi Vincenzo,Calvo Sebastiano,Pergent GerardORCID,Pergent-Martinì Christine,Tomasello Agostino

Abstract

Underwater photogrammetry provides a means of generating high-resolution products such as dense point clouds, 3D models, and orthomosaics with centimetric scale resolutions. Underwater photogrammetric models can be used to monitor the growth and expansion of benthic communities, including the assessment of the conservation status of seagrass beds and their change over time (time lapse micro-bathymetry) with OBIA classifications (Object-Based Image Analysis). However, one of the most complex aspects of underwater photogrammetry is the accuracy of the 3D models for both the horizontal and vertical components used to estimate the surfaces and volumes of biomass. In this study, a photogrammetry-based micro-bathymetry approach was applied to monitor Posidonia oceanica restoration actions. A procedure for rectifying both the horizontal and vertical elevation data was developed using soundings from high-resolution multibeam bathymetry. Furthermore, a 3D trilateration technique was also tested to collect Ground Control Points (GCPs) together with reference scale bars, both used to estimate the accuracy of the models and orthomosaics. The root mean square error (RMSE) value obtained for the horizontal planimetric measurements was 0.05 m, while the RMSE value for the depth was 0.11 m. Underwater photogrammetry, if properly applied, can provide very high-resolution and accurate models for monitoring seagrass restoration actions for ecological recovery and can be useful for other research purposes in geological and environmental monitoring.

Publisher

MDPI AG

Subject

Water Science and Technology,Aquatic Science,Geography, Planning and Development,Biochemistry

Reference101 articles.

1. The Posidonia oceanica matte: A unique coastal carbon sink for climate change mitigation and implications for management;Monnier;Vie et Milieu,2020

2. The value of the world's ecosystem services and natural capital

3. World Atlas of Seagrasses;Green,2003

4. Accelerating loss of seagrasses across the globe threatens coastal ecosystems

5. A call for seagrass protection

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3