RFID and Drones: The Next Generation of Plant Inventory

Author:

Quino Jannette,Maja Joe Mari,Robbins James,Fernandez R. ThomasORCID,Owen James S.ORCID,Chappell MatthewORCID

Abstract

Collection of plant inventory (i.e., count, grade, plant size, yield) data is time-consuming, costly, and can be inaccurate. In response to increasing labor costs and shortages, there is an increased need for the adoption of more automated technologies by the nursery industry. Growers, small and large, are beginning to adopt technologies (e.g., plant spacing robots) that automate or augment certain operations, but greater strides must be taken to integrate next-generation technologies into these challenging unstructured agricultural environments. The main objective of this work is to demonstrate merging specific ground and aerial-based technologies (Radio Frequency Identification (RFID), and small Unmanned Aircraft System (sUAS)) into a holistic systems approach to address the specific need of moving toward automated on-demand plant inventory. This preliminary work focuses on evaluating different RFID tags with respect to their distance and orientation to the RFID reader. Fourteen different RFID tags, five distances (1.5 m, 3.0 m, 4.5 m, 6.0 m, and 7.6 m), and four tag orientations (the front of the tag (UP), back of the tag (DN), tag at sideways left (SL), and tag at sideways right (SR)) were assessed. Results showed that the tag upward orientation resulted in the highest scanning total for both the laboratory and field experiments. Two orientations (UP and SR) had significant effect on the scan total of tags. The distance between the reader and the tags at 1.5 m and 6.0 m did not significantly affect the scanning efficiency of the RFID system in horizontally fixed (p-value > 0.05) position regardless of tags. Different tag designs also produced different scan totals. Overall, since most of the tags were scanned at least once (except for Tag 6F), it is a very promising technology for use in nursery inventory data acquisition. This work will create a unique inventory system for agriculture where locations of plants or animals will not present a barrier as the system can easily be mounted on a drone. Although these experiments are focused on inventory in plant nurseries, results for this work has potential for inventory management in other agricultural sectors.

Funder

Horticultural Research Institute

National Institute of Food and Agriculture

Publisher

MDPI AG

Cited by 17 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. EROI development and validation of a framework to assess the return on the environment of RFID deployment;International Journal of RF Technologies;2024-06-11

2. Evaluation of RFID power and UAV flight level in plant inventory application;Autonomous Air and Ground Sensing Systems for Agricultural Optimization and Phenotyping IX;2024-06-07

3. Drones in E-Commerce;Advances in Computational Intelligence and Robotics;2024-05-31

4. Evaluation of Radio Frequency Identification Power and Unmanned Aerial Vehicle Altitude in Plant Inventory Applications;AgriEngineering;2024-05-10

5. Autonomous Cargo Drone with Collision Avoidance and Warehouse Management IoT;2023 2nd International Conference on Automation, Computing and Renewable Systems (ICACRS);2023-12-11

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3