Autonomous Vineyard Tracking Using a Four-Wheel-Steering Mobile Robot and a 2D LiDAR

Author:

Iberraken DimiaORCID,Gaurier Florian,Roux Jean-Christophe,Chaballier Colin,Lenain Roland

Abstract

The intensive advances in robotics have deeply facilitated the accomplishment of tedious and repetitive tasks in our daily lives. If robots are now well established in the manufacturing industry, thanks to the knowledge of the environment, this is still not fully the case for outdoor applications such as in agriculture, as many parameters are varying (kind of vegetation, perception conditions, wheel–soil interaction, etc.) The use of robots in such a context is nevertheless important since the reduction of environmental impacts requires the use of alternative practices (such as agroecological production or organic production), which require highly accurate work and frequent operations. As a result, the design of robots for agroecology implies notably the availability of highly accurate autonomous navigation processes related to crop and adapting to their variability. This paper proposes several contributions to the problem of crop row tracking using a four-wheel-steering mobile robot, which straddles the crops. It uses a 2D LiDAR allowing the detection of crop rows in 3D thanks to the robot motion. This permits the definition of a reference trajectory that is followed using two different control approaches. The main targeted application is navigation in vineyard fields, to achieve several kinds of operation, such as monitoring, cropping, or accurate spraying. In the first part, a row detection strategy based on a 2D LiDAR inclined in front of the robot to match a predefined shape of the vineyard row in the robot framework is described. The successive detected regions of interest are aggregated along the local robot motion, through the system odometry. This permits the computation of a local trajectory to be followed by a robot. In a second part, a control architecture that allows the control of a four-wheel-steering mobile robot is proposed. Two different strategies are investigated, one is based on a backstepping approach, while the second considers independently the regulation of front and rear steering axle position. The results of these control laws are then compared in an extended simulation framework, using a 3D reconstruction of actual vineyards in different seasons.

Funder

Exxact Robotics

Publisher

MDPI AG

Subject

General Medicine

Reference34 articles.

1. Agricultural Robots: Future Trends for Autonomous Farming;McGlynn;Int. J. Emerg. Technol. Innov. Res.,2019

2. Automatic guidance of a farm tractor along curved paths, using a unique CP-DGPS;Thuilot;Proceedings of the 2001 IEEE/RSJ International Conference on Intelligent Robots and Systems. Expanding the Societal Role of Robotics in the the Next Millennium (Cat. No. 01CH37180),2001

3. Adaptive and predictive non linear control for sliding vehicle guidance: Application to trajectory tracking of farm vehicles relying on a single RTK GPS;Lenain;Proceedings of the 2004 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS) (IEEE Cat. No. 04CH37566),2004

4. LiDAR-based Structure Tracking for Agricultural Robots: Application to Autonomous Navigation in Vineyards

5. Localization for precision navigation in agricultural fields—Beyond crop row following

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3