A Sub-Second Method for SAR Image Registration Based on Hierarchical Episodic Control

Author:

Zhou Rong1,Wang Gengke2,Xu Huaping2ORCID,Zhang Zhisheng1

Affiliation:

1. Mechanical Engineering School, Southeast University, Nanjing 210096, China

2. School of Electronic and Information Engineering, Beihang University, Beijing 100191, China

Abstract

For Synthetic Aperture Radar (SAR) image registration, successive processes following feature extraction are required by both the traditional feature-based method and the deep learning method. Among these processes, the feature matching process—whose time and space complexity are related to the number of feature points extracted from sensed and reference images, as well as the dimension of feature descriptors—proves to be particularly time consuming. Additionally, the successive processes introduce data sharing and memory occupancy issues, requiring an elaborate design to prevent memory leaks. To address these challenges, this paper introduces the OptionEM-based reinforcement learning framework to achieve end-to-end SAR image registration. This framework outputs registered images directly without requiring feature matching and the calculation of the transformation matrix, leading to significant processing time savings. The Transformer architecture is employed to learn image features, while a correlation network is introduced to learn the correlation and transformation matrix between image pairs. Reinforcement learning, as a decision process, can dynamically correct errors, making it more-efficient and -robust compared to supervised learning mechanisms such as deep learning. We present a hierarchical reinforcement learning framework combined with Episodic Memory to mitigate the inherent problem of invalid exploration in generalized reinforcement learning algorithms. This approach effectively combines coarse and fine registration, further enhancing training efficiency. Experiments conducted on three sets of SAR images, acquired by TerraSAR-X and Sentinel-1A, demonstrated that the proposed method’s average runtime is sub-second, achieving subpixel registration accuracy.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3