Target Detection Method Based on Adaptive Step-Size SAMP Combining Off-Grid Correction for Coherent Frequency-Agile Radar

Author:

Chang Jiayun12,Fu Xiongjun13,Zhan Kai2,Zhao Xuezhou2,Dong Jian13,Wu Junqiang2

Affiliation:

1. The School of Integrated Circuits and Electronics, Beijing Institute of Technology, Beijing 100081, China

2. Shanghai Academy of Spaceflight Technology, Shanghai 201109, China

3. Tangshan Research Institute of BIT, Tangshan 063000, China

Abstract

Coherent frequency-agile radar (FAR) has a low probability of intercept (LPI) and excellent performance of electronic counter-countermeasures (ECCM) and electromagnetic compatibility, which can improve radar cooperation and survivability in complex electromagnetic environments. However, due to the nonlinearity of radar carrier frequency and the limitation of the Doppler tolerance of high-resolution range cells, the undesirable blind-speed sidelobes are generated in the two-dimensional (2D) range–velocity plane after coherent integration (CI) using the traditional methods based on a matching filter, which may degrade the target detection performance. To solve this problem, an adaptive step-size sparsity adaptive matching pursuit (SAMP) algorithm combining off-grid correction (ASSAMP-OC) is proposed in this paper, which seeks to achieve a better trade-off between recovery efficiency and detection performance. Firstly, an adaptive iteration step size based on the Spearman correlation coefficients (SCCS) is devised, which solves the problem of the traditional SAMP algorithm being insensitive to the change in iteration step size when the residuals vary slightly, and improves the recovery speed. Secondly, the off-grid correction method by combining a regularized stagewise backtracking idea and gradient descent optimization (GDO) is adopted to improve the recovery accuracy and suppress the blind-speed sidelobe energy (BSSE), which helps to reduce CI gain loss and improve the target detection performance without the prior information of the sparsity lever. Finally, simulation and experimental results demonstrate the effectiveness and efficiency of the proposed method in terms of target detection probability, target signal energy ratio after recovery, and computational cost, compared to several existing methods.

Funder

111 Project of China

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3