Large-Scale Surface Deformation Monitoring Using SBAS-InSAR and Intelligent Prediction in Typical Cities of Yangtze River Delta

Author:

Wang Rong123,Feng Yongjiu123,Tong Xiaohua123,Li Pengshuo23ORCID,Wang Jiafeng23,Tang Panli23,Tang Xiaoyan23,Xi Mengrong23,Zhou Yi23

Affiliation:

1. Shanghai Research Institute for Intelligent Autonomous Systems, Shanghai 201210, China

2. College of Surveying and Geo-Informatics, Tongji University, Shanghai 200092, China

3. The Shanghai Key Laboratory of Space Mapping and Remote Sensing for Planetary Exploration, Tongji University, Shanghai 200092, China

Abstract

Large-scale short-term monitoring and prediction of surface deformation are of great significance for the prevention and control of geohazards in rapidly urbanizing developing cities. Most studies focus on individual cities, but it would be more meaningful to address large urban agglomerations and consider the relevance of the regions within them. In addition, the commonly used linear fitting prediction methods cannot accurately capture the dynamic mechanisms of deformation. In this study, we proposed an automatic PS extraction method (named PS-SBAS-InSAR) that improves SBAS-InSAR to extract surface deformation and an Informer-based short-term surface deformation prediction method for case studies in 16 typical cities of the Yangtze River Delta (YRD). The results show that PS-SBAS-InSAR successfully extracted accurate surface deformation sequences of the YRD. During the period from January 2019 to January 2021, the YRD experienced a slight deformation with an average deformation rate within [−4, 4] mm/year. Geographically neighboring cities may have associated deformation distributions and similar deformation trends, as indicated by average deformation rate maps and landscape metrics. Both types of deformation (i.e., subsidence/uplift) tend to occur simultaneously, with specific areas of subsidence/uplift occurring in close proximity to areas of concentrated deformation. The Informer model effectively captured the time-series variation in surface deformation, suggesting a slowdown of deformation over the next two months (February 2021–March 2021). Our work contributes to a better understanding of changes and trends in large-scale surface deformation and provides useful methods for monitoring and predicting surface deformation in coastal areas.

Funder

the National Natural Science Foundation of China

the National Key R&D Program of China

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3