Geospatial Synthesis of Biogeochemical Attributions of Porphyrins to Oil Pollution in Marine Sediments of the Gulf of México

Author:

Muñoz-Arriola FranciscoORCID,Macías-Zamora José Vinicio

Abstract

Porphyrins are highly persistent in the environment and represent a helpful biogeochemical attribute to assess the spatial distribution of the effects of oil spills on ecosystems and their resilience. In areas prone to natural and human-originated oil spills, the measurement of VO– and nickel–porphyrins in marine–sediment samples can identify the effects of oil pollution across spatiotemporal scales. The goal is to explore whether or not these compounds can be useful indicators of the geospatial attributions of oil contamination in the surficial sediments. We hypothesize that the geospatial gradients of porphyrins in marine sediments from petroleum spills and seepage activities—related to traditional indices of oil pollution, such as heavy metals and polycyclic aromatic hydrocarbons—can be identified in small sediment samples and concentrations. The objectives are two-fold: (1) extract and measure VO– and nickel–porphyrins from small marine sediment samples using high-pressure liquid chromatography, and (2) use cluster analysis and the canonical correlation analysis to identify the biogeochemical and geospatial attributions between VO–porphyrins and another index of oil pollution extracted and analyzed from sediments of the Campeche Shelf, in the Gulf of Mexico. High-pressure liquid chromatography with diode array detectors, two inverse phase columns and an isocratic separation method, was used to analyze the marine sediments. We identified 5.1 ng/g to 240.3 ng/g to VO–porphyrins concentrations with gradients toward areas identified as potential sources of oil pollution. Similar patterns were present for nickel–porphyrins, with values two orders of magnitude below those for the VO–porphyrins. The results represent a valuable opportunity to measure the biomarkers associated with oil pollution in small sediment samples. Furthermore, the results can find the potential drawbacks of benthic ecosystem resilience.

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3