Abstract
The Yorktown Formation records paleoclimate conditions along the mid-Atlantic Coastal Plain during the mid-Piacenzian Warm Period (3.264 to 3.025 Ma), a climate interval of the Pliocene in some ways analogous to near future climate projections. To gain insight into potential near future changes, we investigated Yorktown Formation outcrops and cores in southeastern Virginia, refining the stratigraphic framework. We analyzed 485 samples for alkenone-based sea surface temperature (SST) and productivity estimates from the Holland and Dory cores, an outcrop at Morgarts Beach, Virginia, and the lectostratotype of the Yorktown Formation at Rushmere, Virginia, and analyzed planktonic foraminferal assemblage data from the type section. Using the structure of the SST record, we improved the chronology of the Yorktown Formation by establishing the maximum age ranges of the Rushmere (3.3–3.2 Ma) and Morgarts Beach (3.2–3.15 Ma) Members. SST values for these members average ~26 °C, corroborating existing sclerochronological data. Increasing planktonic foraminifer abundance, productivity, and species diversity parallel increasing SST over the MIS M2/M1 transition. These records constitute the greatest temporal concentration of paleoecological estimates within the Yorktown Formation, aiding our understanding of western North Atlantic temperature patterns, seasonality and ocean circulation during this interval. We provide a chronologic framework for future studies analyzing ecological responses to profound climate change.
Funder
National Science Foundation
United States Geological Survey
Subject
General Earth and Planetary Sciences
Reference128 articles.
1. IPCC, 2013: Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change;Stocker,2013
2. Integrating geological archives and climate models for the mid-Pliocene warm period
3. The PRISM3D paleoenvironmental reconstruction;Dowsett;Stratigraphy,2010
Cited by
8 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献