Reviewing Martian Atmospheric Noble Gas Measurements: From Martian Meteorites to Mars Missions

Author:

Smith ThomasORCID,Ranjith P. M.,He Huaiyu,Zhu Rixiang

Abstract

Martian meteorites are the only samples from Mars available for extensive studies in laboratories on Earth. Among the various unresolved science questions, the question of the Martian atmospheric composition, distribution, and evolution over geological time still is of high concern for the scientific community. Recent successful space missions to Mars have particularly strengthened our understanding of the loss of the primary Martian atmosphere. Noble gases are commonly used in geochemistry and cosmochemistry as tools to better unravel the properties or exchange mechanisms associated with different isotopic reservoirs in the Earth or in different planetary bodies. The relatively low abundance and chemical inertness of noble gases enable their distributions and, consequently, transfer mechanisms to be determined. In this review, we first summarize the various in situ and laboratory techniques on Mars and in Martian meteorites, respectively, for measuring noble gas abundances and isotopic ratios. In the second part, we concentrate on the results obtained by both in situ and laboratory measurements, their complementarity, and the implications for the Martian atmospheric dynamic evolution through the last billions of years. Here, we intend on demonstrating how the various efforts established the Mars-Martian meteorites connection and its significance to our understanding of the red planet.

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Elemental and isotopic fractionation as fossils of water escape from Venus;Geochimica et Cosmochimica Acta;2023-11

2. Evidence for Large Planetary Climate Altering Thermonuclear Explosions on Mars in the Past;International Journal of Astronomy and Astrophysics;2023

3. ANN-LIBS analysis of mixture plasmas: detection of xenon;Journal of Analytical Atomic Spectrometry;2022

4. Mars’ atmospheric neon suggests volatile-rich primitive mantle;Icarus;2021-12

5. Mars: new insights and unresolved questions;International Journal of Astrobiology;2021-12

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3