Differential SAR Interferometry Using Sentinel-1 Imagery-Limitations in Monitoring Fast Moving Landslides: The Case Study of Cyprus

Author:

Tzouvaras MariosORCID,Danezis ChrisORCID,Hadjimitsis Diofantos G.

Abstract

Cyprus, being located on the Mediterranean fault zone, exhibits a unique geodynamic regime since its tectonic evolution is driven by the interaction of the Eurasian and African plate. Besides its seismological interest, many active landslides and slope instabilities in areas of steep topography occur in Cyprus, having substantial impact on the built environment, by posing an imminent threat for entire settlements and critical infrastructure. Moreover, extreme meteorological events occur rarely, like severe rainfall and thunderstorms, that combined with the geological properties in some areas and the seismically stressed ground, can lead to landslides, causing severe damages to critical infrastructure. In the present study, the DInSAR methodology is applied for the detection of two individual landslide events that were triggered by heavy rainfall in Limassol and Paphos Districts in February 2019. Six co-event interferometric Synthetic Aperture Radar (SAR) pairs were used to produce displacement maps in vertical and east-west directions to study the resulting slope deformations. The above are carried out using Sentinel-1 imagery that are freely provided under the Copernicus umbrella. The limitations that arise from the speed and complexity of the deformations under study and the adverse residing meteorological conditions that caused these phenomena are investigated, as found in literature. Indeed, the sparse vegetation at the slopes affected by the landslides, the residing meteorological conditions, the heavy rainfall that triggered the two landslides, and the temporal phase aliasing effect due to the speed of the ground deformation were found to be the main limitations for the application of DInSAR methodology, resulting in the underestimation of the ground deformation that occurred.

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3