Abstract
The study of the mechanical properties between the pile and soil is limited when an enlarged head is added at the bottom of the pile foundation, which acts as anchor stabilization. This study investigates the blade pile foundation used in a solar panel project, which is subjected to lateral wind load action. The parametrical study is performed through the numerical simulation of the blade pile that is embedded in clay soil. The study considers both the soil modulus and the strength parameter of cohesion and concludes that the blade pile foundation capacity has a positive correlation with both. Moreover, when adding blades to a normal circular hollow section (CHS) pile, if the clay cohesion is less than 35 MPa, the capacity improvement rate will be greater. It analyzes the simulated load versus the soil displacement by considering clay in the soil states of very soft, soft, firm, stiff, very stiff and hard. This study finds that the blade application increases the lateral capacity of the pile foundation. In addition, when the soil is very soft to firm, adding blades results in a higher percentage of capacity improvement, which is up to 14.8% for the standard 1.5-m CHS pile with an outside diameter of 76.1 mm.
Subject
General Earth and Planetary Sciences
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献