Parametric Study of Lateral Loaded Blade Pile in Clay

Author:

Li Lin,Sui Guowei,Zhou JialinORCID,Oh ErwinORCID

Abstract

The study of the mechanical properties between the pile and soil is limited when an enlarged head is added at the bottom of the pile foundation, which acts as anchor stabilization. This study investigates the blade pile foundation used in a solar panel project, which is subjected to lateral wind load action. The parametrical study is performed through the numerical simulation of the blade pile that is embedded in clay soil. The study considers both the soil modulus and the strength parameter of cohesion and concludes that the blade pile foundation capacity has a positive correlation with both. Moreover, when adding blades to a normal circular hollow section (CHS) pile, if the clay cohesion is less than 35 MPa, the capacity improvement rate will be greater. It analyzes the simulated load versus the soil displacement by considering clay in the soil states of very soft, soft, firm, stiff, very stiff and hard. This study finds that the blade application increases the lateral capacity of the pile foundation. In addition, when the soil is very soft to firm, adding blades results in a higher percentage of capacity improvement, which is up to 14.8% for the standard 1.5-m CHS pile with an outside diameter of 76.1 mm.

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

Reference29 articles.

1. Full-Scale Field Tests of Different Types of Piles

2. Comparison between Egyptian code, DIN 4014, and AASHTO methods of predicting ultimate bearing capacity of large diameter bored piles;Abdel-Rahman;El-Azher Univ. Eng. J.,2006

3. Behavior of grouting pile in sandy soil

4. Capacity and failure mechanism of laterally loaded jet-grouting reinforced piles: Field and numerical investigation

5. Effects of vertical loading on lateral screw pile performance

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3