Provenance Response to Rifting and Separation at the Jan Mayen Microcontinent Margin

Author:

Morton AndrewORCID,Jolley David W.,Szulc Adam G.,Whitham Andrew G.,Strogen Dominic P.ORCID,Fanning C. Mark,Hemming Sidney R.

Abstract

The Eocene-Miocene successions recovered at DSDP sites on the Jan Mayen Ridge (NE Atlantic) and on the adjacent East Greenland margin provide a sedimentary record of the rifting and separation of the Jan Mayen Microcontinent from East Greenland. A combination of palynology, conventional heavy mineral analysis, single-grain major and trace element geochemistry and radiometric dating of amphibole and zircon has revealed a major change in sediment provenance took place at the Early/Late Oligocene boundary corresponding to a prominent seismic reflector termed JA. During the Eocene and Early Oligocene, lateral variations in provenance character indicate multiple, small-scale transport systems. Site 349 and Kap Brewster were predominantly supplied from magmatic sources (Kap Brewster having a stronger subalkaline signature compared with Site 349), whereas Site 346 received almost exclusively metasedimentary detritus. By contrast, Late Oligocene provenance characteristics are closely comparable at the two Jan Mayen sites, the most distinctive feature being the abundance of reworked Carboniferous, Jurassic, Cretaceous and Eocene palynomorphs. The Site 349 succession documents an evolution in the nature of the magmatic provenance component. Supply from evolved alkaline magmatic rocks, such as syenites, was important in the Middle Eocene and lower part of the Early Oligocene, but was superseded in the later Early Oligocene by mafic magmatic sources. In the latest Early Oligocene, the presence of evolved clinopyroxenes provides evidence for prolonged magmatic fractionation. Initial low degrees of partial melting led to generation of alkaline (syenitic) magmas. The extent of partial melting increased during the Early Oligocene, generating basaltic rocks with both subalkaline and alkaline compositions. Towards the end of the Early Oligocene, the amount of partial melting and magma supply rates decreased. In the Late Oligocene, there is no evidence for contemporaneous igneous activity, with scarce magmatic indicator minerals. The provenance change suggests that the hiatus at the Early/Late Oligocene boundary represents the initiation of the proto-Kolbeinsey Ridge and separation of the Jan Mayen Microcontinent from East Greenland.

Funder

This research was carried out as part of CASP’s Greenland-Norway Project.

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3